On multiplicative automatic sequences

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicative Structures on Homotopy Spectral Sequences Ii

This short paper is a companion to [D1]. Here the main results of that paper are used to establish multiplicative structures on a few standard spectral sequences. The applications consist of (a) applying [D1, Theorem 6.1] to obtain a pairing of spectral sequences, and (b) identifying the pairing on the E1or E2-term with something familiar, like a pairing of singular cohomology groups. Most of t...

متن کامل

Automatic continuity of almost multiplicative maps between Frechet algebras

For Fr$acute{mathbf{text{e}}}$chet algebras $(A, (p_n))$ and $(B, (q_n))$, a linear map $T:Arightarrow B$ is textit{almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that $q_n(Tab - Ta Tb)leq varepsilon p_n(a) p_n(b),$ for all $n in mathbb{N}$, $a, b in A$, and it is called textit{weakly almost multiplicative} with respect to $(p_n)$ and $(q_n)$...

متن کامل

Completely Multiplicative Automatic Functions

We show that a completely multiplicative automatic function, which dos not have 0 as value, is almost periodic.

متن کامل

Automatic supermartingales acting on sequences

This paper describes a construction of supermartingales realized as automatic functions. A capital of supermartingales is represented using automatic capital groups (ACG). Properties of these automatic supermartingales are then studied. Automatic supermartingales induce a notion of random infinite binary sequence. We show that the class of random sequences coincide with that of disjunctive sequ...

متن کامل

Multiplicative Structures on Homotopy Spectral Sequences, Part I

A tower of homotopy fiber sequences gives rise to a spectral sequence on homotopy groups. In modern times such towers are ubiquitous, and most of the familiar spectral sequences in topology can be constructed in this way. A pairing of towers W∗ ∧X∗ → Y∗ consists of maps Wm ∧Xn → Ym+n which commute (on-the-nose) with the maps in the towers. It is a piece of folklore that a pairing of towers give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2020

ISSN: 0024-6093,1469-2120

DOI: 10.1112/blms.12317